

Advanced Controls and Gas Path Health Management: Relevance to Propulsion Safety and Affordable Readiness

Don Simon & Jonathan Litt

Army Research Laboratory – Vehicle Technology Directorate (Z)

Controls and Dynamics Technology Branch (RIC)

DLT Forum

May 5, 2006

1

NASA & DoD Safety-Related Programs

Research Laboratory		A/ A O A	DoD
		NASA Aviation Safety Program	Propulsion Safety & Affordable Readiness (P-SAR) Program
Goals	Safety	 Improve inherent safety of legacy and new vehicles Overcome safety technology barriers which would otherwise constrain full realization of the Next Generation Air Transportation System 	Reduce propulsion related Class A mishaps
	Affordability		Reduce propulsion maintenance costs
	Readiness		Increase average time on wing
Projects / Elements		 Integrated Vehicle Health Management Integrated Intelligent Flight Deck Integrated Resilient Aircraft Controls Aircraft Aging and Durability 	 Hot Section Cold Section Mechanical Systems & Drives Electrical Power Generation Prognostics & Health Management Life Management

Outline

- Aircraft Engine Life Extending Control
- Gas Path Health Management
 - Overview
 - Enhanced Bank of Kalman Filters for Sensor Fault Diagnostics
 - Automated Power Assessment for Turboshaft Engines
- Data Fusion System For Aircraft Engine Foreign Object Damage Detection

Life Extending Controls

Goal: Reduce maintenance costs by increasing the average engine on-wing life

Approach

Life Modeling

- Developed a sensor-based Thermomechanical Fatigue (TMF) life model for the first stage cooled stator of the High Pressure Turbine (HPT)
- Developed a probability of failure model, based on a Weibull distribution, to calculate a components risk of failure based upon its past operating history
- Included uncertainty in sensor measurements, actuators, and material qualities

Controls

 Developed a new control strategy which optimizes the engine core speed (N2) acceleration schedule to minimize TMF damage while maintaining adequate engine rise time

Retired HPT Blades

Engine Simulation Demonstration of Life Extending Control Using Stochastic Based Life Models

Comparison of Average TMF Damage Accumulation

(With Varying Ambient Condition and Control Mode)

Control Operating Condition	Original Control Schedule	Optimized Control Schedule	
Design Condition	1.0	0.628 (-37.2%)	
With Typical Operating Conditions	1.132	0.718 (-36.6%)	
Hot Day Bias	1.668	0.931 (-44.2%)	
Cold Day Bias	0.609	0.481 (-21.0%)	

TMF Damage Accumulation (Comparison of Original and Optimized Control

3. Optimized control results in significant component life savings

TMF Damage Accumulation w/ Original Control

1. Component damage accumulation is a function of ambient operating condition

Engine Core Speed Acceleration Response

2. Engine control logic can be optimized to minimize damage while maintaining desired engine performance

Aircraft Engine Gas Path (Flow Path) Health Management

Gas Path Health Management is a Key Element of an Overall Aircraft Engine Health Management System

Gas Path Performance Diagnostics Engine Fault Isolation Approach *

A general influence coefficient matrix may be derived for any particular gas turbine cycle, defining the set of differential equations which interrelate the various dependent and independent engine performance parameters.

^{*} From "Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines" by Louis A. Urban, 1974

Gas Path Health Management Process

- 1. Sensing & Data Acquisition
- 2. Condition/Trend Monitoring
- 3. Detection

4. Isolation

5. Recommendation

Engine Performance Deterioration and Abrupt Event Illustration

Gas-Path Health Management Architecture & Recent NASA GRC Contributions

Enhanced Bank of Kalman Filters for Sensor Fault Diagnostics & Accommodation

Bank of Kalman Filters Example: Detection & Isolation of a T3 Sensor Bias

WSSR Signals
(T3 Bias Injected @ time = 90 seconds)

Automated Power Assessment for Helicopter Turboshaft Engines

- Army Research Laboratory Vehicle Technology Directorate task with Aviation & Missile Research Development and Engineering Center (AMRDEC) Aviation Engineering Directorate (AED)
- Objective: Develop a technique for the automated continuous assessment of available power for helicopter turbo-shaft engines

Automated Power Assessment for Helicopter Turboshaft Engines (Background)

Engine Maximum Power Check (MPC)

- Establishes Engine Torque Factor (ETF), an indication of available engine power
- Requires engine performance data to be collected at altitude while maintaining constant airspeed and operating the engine at a control limit
- ETF determined as a function of recorded parameters and target torque values
- Required when an engine is first installed, or when an engine fails the Health Indicator Test (HIT) Check

Operation in theater

- Desert (sandy) environments significantly accelerates engine deterioration - necessitates more frequent **MPCs**
- Performing MPCs in theater presents risk of vehicle incurring hostile fire

ETF Table Lookup

T700 Stage 1 Blisk Erosion Source: Westar Aerospace & Defense Group, Inc. Army RIMFIRE Program

Automated Power Assessment for Helicopter Turboshaft Engines

Progress to date:

- Real-time table lookup model developed to process Health and Usage Monitoring System (HUMS) data
 - Inputs: ambient temperature, ambient pressure, airspeed, and shaft horsepower
 - Outputs: nominal gas generator speed
 (Ng) and turbine gas temperature (T45)
- Influence coefficient matrices generated to estimate engine performance deterioration from measurement residuals

Remaining Tasks:

- Non-uniform update of performance estimates (collected at varying operating conditions over time)
- Extrapolation of performance estimates to high power conditions
- Automation of the Engine Torque Factor (ETF) calculation

Evolution of Ng & T45 residuals for a T700-701C engine over a six month period

Gas-Path Health Management Architecture & NASA GRC IVHM Project Plans (Proposed)

Data Fusion System For Foreign Object Damage Detection

Jonathan Litt Z/RIC

Data/Sensor Fusion

- Use multiple disparate sensor suites to observe an event though different eyes.
- Various "domain experts" form an opinion about the event based on the evidence and their knowledge.
- The expert opinions are brought together to support or refute each others' inferences.
- When experts agree, their final fused opinion carries more weight than individual opinions

Cues and Symptoms of Foreign Object Damage (FOD)

How does the flight crew recognize a FOD event?

- Engine surge, potentially resulting in the loss of power
- Thud or bang
- Fire warning
- Flame coming out of the engine
- Vibration
- Yaw of the airplane caused by thrust imbalance
- High Exhaust Gas Temperature (EGT)
- Change in the spool speeds
- Smoke/odor in cabin bleed air
- Engine Pressure Ratio (EPR) change
- Flock of birds in the immediate vicinity

Several of these should occur TOGETHER, would a pilot diagnose a FOD event if only one symptom is evident?

Why Develop This System?

- System developed to raise the level of autonomy of the engine and thus reduce pilot workload
- Most FOD events occur close to the ground where pilot workload is greatest
- Pilot procedures in place to evaluate engines with suspected FOD once safe altitude is reached, easier for pilots if potentially damaged engines are identified
- Rejected take-off due to suspected FOD is a cause of accidents
- Even if no obvious damage, impact can produce cracks that can be propagated through high-cycle fatigue

Problem Setup

Use Tools to Analyze Data and Extract Features and Fuse

- A Kalman Filter can analyze gas path data to estimate shift in fan efficiency
- Wavelet analysis can be used to identify the signature of an impulse due to impact from accelerometer data.
- Fuzzy logic can be used to interpret features extracted from the data
- Dempster-Shafer-Yager Theory to combine expert opinions while accounting for conflict

FOD Detection Data Fusion System Overview

Foreign Object Ingestion Detection Data Fusion System

Final Comments

- This work was performed using simulated data and best guesses based on the very limited literature on FOD events.
 The system provides a framework for more expert knowledge
- The framework is flexible and modular
 - The structure facilitates the incorporation of additional experts in parallel
 - The existing fuzzy rule bases can be changed easily based on the acquisition of expert knowledge
 - Additional features can be easily added to the rule bases